mTOR inhibitors/activators

Mammalian target of rapamycin (mTOR), also known as FKBP12-rapamycin-associated protein (FRAP), is a 280 kDa serine/threonine kinase which plays a key role in regulating critical cellular processes such as growth, proliferation, cytoskeletal organization, transcription, protein synthesis and ribosomal biogenesis by integrating three major inputs-nutrients (amino acids), growth factors (insulin), and cellular energy status.  [show the full text]

Isoform-selective Products

Cat.No. Product Name Information Product Use Citations Product Validations
S1039 Rapamycin (Sirolimus) Rapamycin is a specific mTOR inhibitor with IC50 of ~0.1 nM in HEK293 cells. This compound binds to FKBP12 and specifically acts as an allosteric inhibitor of mTORC1. It is an Autophagy activator and an immunosuppressant.
Nature, 2025, 10.1038/s41586-025-09018-7
Signal Transduct Target Ther, 2025, 10(1):271
Cell Metab, 2025, S1550-4131(25)00294-3
Verified customer review of Rapamycin (Sirolimus)
S1120 RAD001 (Everolimus) Everolimus is an mTOR inhibitor of FKBP12 with IC50 of 1.6-2.4 nM in a cell-free assay. Everolimus induces cell apoptosis and autophagy and inhibits tumor cells proliferation.
Cancer Cell, 2025, 43(4):776-796.e14
Nat Commun, 2025, 16(1):8189
Cell Rep Med, 2025, 6(11):102425
Verified customer review of RAD001 (Everolimus)
S2827 Torin 1 Torin 1 is a potent inhibitor of mTORC1/2 with IC50 of 2 nM/10 nM in cell-free assays; exhibits 1000-fold selectivity for mTOR than PI3K.
Cell Mol Immunol, 2025, NONE
Nat Struct Mol Biol, 2025, 10.1038/s41594-025-01581-x
Nat Commun, 2025, 16(1):3292
Verified customer review of Torin 1
S2817 Torin 2 Torin 2 is a potent and selective mTOR inhibitor with IC50 of 0.25 nM in p53 / - MEFs cell line; 800-fold greater selectivity for mTOR than PI3K and improved pharmacokinetic properties. This compound inhibits ATM/ATR/DNA-PK with EC50 of 28 nM/35 nM/118 nM,in PC3 cell lines respectively. It decreases cell viability and induces autophagy and apoptosis.
J Med Virol, 2025, 97(8):e70534
J Gen Virol, 2025, 106(3)002086
bioRxiv, 2025, 2025.09.24.678136
Verified customer review of Torin 2
S2638 NU7441 (KU-57788) NU7441 (KU-57788) is a highly potent and selective DNA-PK inhibitor with IC50 of 14 nM. It also inhibits mTOR and PI3K with IC50 of 1.7 μM and 5 μM in cell-free assays, respectively, and reduces the frequency of NHEJ while increasing the rate of HDR following Cas9-mediated DNA cleavage.
Nat Cell Biol, 2025, 27(1):59-72
Trends Biotechnol, 2025, S0167-7799(25)00314-2
Nat Commun, 2025, 16(1):997
Verified customer review of NU7441 (KU-57788)
S9736 ME-344 ME-344 is a synthetic metabolite of NV-128, a potent inhibitor of mitochondrial oxidative phosphorylation (OXPHOS) complex I, disrupting ATP generation and oxygen consumption. It also inhibits mTOR by downregulating the AKT/mTOR pathway, exhibiting anticancer activity by inhibiting cell growth and viability in leukaemia cell lines with IC50 values of 70–260 nM.
S8163 Paxalisib (GDC-0084) Paxalisib (GDC-0084, RG7666) is a brain penetrant inhibitor of PI3K and mTOR with Kiapp values of 2 nM, 46 nM, 3 nM, 10 nM and 70 nM for PI3Kα, PI3Kβ, PI3Kδ, PI3Kγ and mTOR.
Cell Death Dis, 2025, 16(1):210
Cell Death Discov, 2023, 9(1):172
Mol Cancer Res, 2022, 20(6):996-1008
S1555 AZD8055 AZD8055 is a novel ATP-competitive mTOR inhibitor with IC50 of 0.8 nM in MDA-MB-468 cells with excellent selectivity (∼1,000-fold) against PI3K isoforms and ATM/DNA-PK. This compound induces caspase-dependent apoptosis and also induces autophagy. Phase 1.
Signal Transduct Target Ther, 2025, 10(1):92
Plant Commun, 2025, 6(7):101389
J Cereb Blood Flow Metab, 2025, 0271678X251321641
Verified customer review of AZD8055
S1022 Ridaforolimus (Deforolimus, MK-8669) Ridaforolimus (Deforolimus, MK-8669, AP23573) is a selective mTOR inhibitor with an IC50 of 0.2 nM in HT-1080 cell line; while not classified as a prodrug, mTOR inhibition and FKBP12 binding are similar to rapamycin. Phase 3.
JCI Insight, 2025, e186456
Front Oncol, 2025, 15:1486671
Nat Commun, 2024, 15(1):3636
Verified customer review of Ridaforolimus (Deforolimus, MK-8669)
S2811 Sapanisertib (MLN0128, INK-128) Sapanisertib (MLN0128, INK 128, TAK-228) is a potent and selective mTOR inhibitor with IC50 of 1 nM in cell-free assays; >200-fold less potent to class I PI3K isoforms, superior in blocking mTORC1/2 and sensitive to pro-invasion genes (vs Rapamycin). Phase 1.
Mol Oncol, 2025, 19(1):151-172
Sci Adv, 2025, 11(6):eadq3802
Nat Aging, 2025, 5(7):1340-1357
Verified customer review of Sapanisertib (MLN0128, INK-128)

Mammalian target of Rapamycin (mTOR), also known as FKBP12-rapamycin-associated protein (FRAP), is a 280 kDa serine/threonine kinase [1-3]. mTOR kinase activity could be promoted by various extra- and intracellular stimulus like trophic factors, mitogens, hormones, amino acids and cellular stress [4-8]. In response to increased availability of stimuli, mTOR modulates numerous of important cellular processes, e.g. protein translation and autophagy, by phosphorylating its downstream molecules [9]. mTOR is the nuclear catalytic subunit of two complexes: mTORC1 and mTORC2 [1]. mTORC1 is comprised of mTOR, Raptor, mLST8, and PRAS40 (a mTOR inhibitor). This complex presented classic features of mTOR as a nutrient or energy sensor and protein synthesis conditioner [5, 10]. Low level of nutrient levels, growth factor and cellular stress inhibits the activity of mTORC1 [9, 10]. p70-S6 Kinase 1 (S6K1) and the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) are the best investigated targets of mTORC1 [5]. The activated mTORC1 showed a negative feedback inhibition on PI3K signaling [11]. mTORC1 could be specifically suppressed by rapamycin, as well as its allosteric ramifications. mTORC2 contains mTOR, Rictor, mLST8, and mSIN1 [12, 13]. Different from mTORC1, activated mTORC2 could induce the phosphorylation of Akt at serine 473  and serving as a positive feedback on PI3K signaling cascade [14]. Although mTORC2 was identified as a rapamycin-insensitive complex previously [14], an inhibition effect of rapamycin on free mTOR was observed in some cell lines [15]. Recent studies revealed that disordered activity of mTOR is related to some malignant and resistant cancer. The specific inhibitors, such as rapamycin and Temsirolimus(CCI-779), have been developed and trialed as novel anti-cancer agents [16, 17].